

Exploiting the Dual FPU in Blue Gene

March 2006 (Updated June 2006)

Introduction
The IBM

®
 System Blue Gene

®
 Solution supercomputer consists of up to 65,536 compute

nodes. Each compute node contains 2 PowerPC 440 (PPC440) processors, each

enhanced with a specially designed dual Floating Point Unit (FPU). This dual FPU is

also known as the “Double Hummer” FPU. Each of the two FPU units contains 32 64-bit

floating point registers for a total of 64 FP registers per processor.

The PPC 440 and the dual FPU
In addition to the regular PowerPC floating point instructions (operating on the Primary

registers), new parallel floating point instructions have been added to operate

simultaneously on both the Primary and Secondary registers. Some of the new dual FPU

instructions perform identical operations on each set of registers in parallel. Other

instructions allow operands to be copied from one register set to the other, or perform

complex cross operations optimized for complex arithmetic. A set of load/store

instructions has also been added to perform loads and stores to both sets of FP registers

with a single instruction.

Since the PPC440 chip can issue at most one load/store and one FPU operation per cycle,

the parallel instructions have the potential to double the floating point performance of the

chip. The IBM Mathematical Acceleration Subsystem (MASS) library (and the vector

MASSV library), and the IBM Engineering and Scientific Software Library (ESSL) take

advantage of the parallel instructions to fully utilize the dual FPU. Hand written code

using the parallel instructions can easily access this performance increase. New builtin

functions have been added to the IBM XL C and C++ compilers to generate the parallel

instructions. Intrinsic functions have been added to the IBM XL Fortran compiler.

The IBM XL compilers will automatically generate parallel FPU instructions, but

doubling the floating point performance benefit is not usually achieved for arbitrary

floating point code.

How much benefit can you expect from a second FPU?
John D. McCalpin gave a keynote talk at the 3

rd
 IEEE Workshop in Workload

Characterizations (http://www.cs.virginia.edu/~mccalpin/wwc-keynote.html), where he found

that most “real applications” and much of SPEC 2000 FP benchmarks show that

approximately 40% of instructions issues are load/store operations and about 20% are

floating point operations. Using this data, assuming completely independent operations

with perfect scheduling and no cache interference or stalls, adding a second load/store

unit and a second floating point unit would allow cutting approximately 60% of

instructions issued in half to 30%, increasing the instructions issued per cycle by 42%. In

the “real world”, the above assumptions would not hold, and the actual performance

increase would be smaller. For BlueGene, the “second” load/store unit may only be used

for parallel floating point load/stores, lowering the possible benefit.

There are obvious counter-examples, where the percentage of load/store and floating

point instructions issued is close to 100%, and the speedup can be close to 2. Examples

of this speedup include vector and matrix operations, as well as the LINPACK

benchmark. These examples generally process floating point data in regular patterns,

such as arrays of floating point values

Limitations of the Blue Gene dual FPU

Floating Point Registers

While an IBM POWER5
®

 processor has only 32 FP registers, it does contain 2

independent floating point units, as well as 2 independent load/store units. A Power 5

processor may issue instructions to all four of those units every cycle. The PPC440 is

limited to issuing at most one floating point operation and one load/store instruction per

cycle. There are 64 FP registers available; however these registers are not independently

addressable. The encoding of registers in the PowerPC architecture allows only 5 bits to

name a register, suitable for addressing 32 registers. To overcome this limitation with the

Blue Gene double FPU, the new parallel instructions use the 5 bits to address a register

pair. A register pair N consists of the N
th

 register in the primary register set and the

corresponding N
th

 register in the secondary register set. This pairing obviously violates

the independent assumption in the previous section.

Parallel load/store

A major benefit of the dual FPU is the ability to issue parallel load/store instructions. As

only one load or store instruction may be issued each cycle, the maximum memory

accessed by a PPC440 (an 8 byte floating point operand) can be doubled, allowing 16

bytes to be loaded or stored per cycle. The compiler’s use of the parallel load/store

instructions must be conservative. On the PPC440, any floating point load or store whose

operands cross a cache line boundary (32 bytes) will take an alignment trap. Normally

floating point operands are aligned on an 8 byte boundary, so no alignment trap will

occur using a single floating point load or store. A 16 byte load from an arbitrary 8 byte

boundary will cause an alignment trap 25% of the time. As an alignment trap may cause

thousands of cycles of delay, it is important to avoid parallel loads and stores if the

operand cannot be proven to be aligned on a 16 byte boundary.

The parallel load/store instructions also have a further restriction. Like AltiVec
™

load/store instructions, these instructions use the base/index instruction format, with no

displacement. Any non-zero displacement must be allocated in an index register. This

increases register pressure for the integer registers, causing more spill. Modification of

the compiler to force all floating point load/stores to use the base/index form showed that

for SPEC 2000 FP programs on an IBM Power 4, the slowdown was no more than 5%.

Since many load/stores will be to primary registers without this restriction, the real effect

should be much smaller.

Single precision arithmetic

The parallel instructions added for the dual FPU calculate all operations in double

precision. It is possible to process single precision computations using double precision

instructions. While this increases the range of values over single precision operations, it

is not possible to deliver the bitwise exact same results generated by single precision

expressions using double precision, unless each double precision operation is

immediately followed by a round-to-single-precision operation. On the PPC440 FPU,

this additional rounding would add 5 cycles of latency to each parallel operation,

negating the benefits of the parallelization. For this reason, single precision calculations

are not parallelized automatically by the compiler.

IEEE FP Exceptions

In a similar vein, the parallel operations of the dual FPU do not signal IEEE exceptions.

Any program using the -qsigtrap compiler option to detect IEEE exceptions will not be

parallelized.

Compiler generation of dual FPU code
The IBM XL compilers will use the dual FPU in several ways:

• Even without optimization, complex arithmetic will use the parallel instructions to

speed up calculations. Structure assignments and memcpy will use the parallel

load/store instructions if the alignment and size are multiples of 16.

• At –O2 and up, the compiler will attempt to convert floating point calculations

within a single block to parallel operations using a Superword Level Parallelism
1

(SLP) algorithm. Alignment information is propagated within a procedure, and

heuristics are used to detect situations where generating parallel code may

necessitate too many moves between primary and secondary registers.

• -qhot=simd (default with –qarch=440d and -qhot/-O4/-O5) will do loop analysis

to generate parallel code across basic blocks, versioning loops for alignment, and

rewriting loops to parallelize as much as possible.

The same framework used by the XL compilers for AltiVec and Cell Broadband

Engine™ Single Instruction Multiple Data (SIMD) code generation is used for

BlueGene, treating the double FPU as a 2-element vector.

• Linking with –O5 enables more loop analysis, and allows whole program

alignment propagation, reducing the overhead for loop versioning for alignment

and for overlap.

1
 Exploiting Superword Level Parallelism with Multimedia Instruction Sets Samuel Larsen and Saman

Amarasinghe

Achieving doubled floating point performance using the
dual FPU
The IBM XL compiler can most easily utilize the dual FPU on Blue Gene when

compiling code processing vectors of doubles accessed with stride 1. An example of

code that parallelizes well is:

 subroutine daxpy (a,b,c,n)

 real*8 a(n),b(n),

 do 10 i = 1,n

 a(i) = a(i) + b(i) * c

10 continue

 end

Compiling this with –O5 –qarch=440d
2
, the compiler will generate (in pseudo-code):

 if (n is large enough && a is 16 byte aligned && b is 16 byte aligned) {

 Use parallel instructions to load/compute/store

 } else {

 Load/compute/store using single FPU

 }

Each loop is then unrolled enough times to cover the latency of the FPU (5 cycles), and

scheduled to overlap the load/stores and the computation as much as possible. For this

subroutine, each floating-point multiply-add (FMA) operation is fed by 2 loads and one

store. The parallel loop executes approximately ½ the number of instructions of the loop

using the single FPU.

Notes:

• The test for alignment and size of n add extra overhead that would not be present

when compiling with –qarch=440. This can reduce the benefit of the dual FPU

unless the value of n is large enough, and is one cause of dual FPU code that is

slower than the equivalent single FPU code.

• Whole program analysis using –O5 at link time will try to propagate alignment

information across the whole program. If interprocedural analysis (IPA)

optimizer can find that all callers of subroutine daxpy always pass aligned

parameters, then the alignment test may be omitted.

Program code that does not parallelize well
If we modify the daxpy routine above to handle non-stride one accesses, and add -qreport

to the command line, we will find that the program is not parallelized.

 subroutine daxpy1 (a,b,c,inca,incb,n)

 real*8 a(*),b(*)

 ia = 1

 ib = 1

 do 10 i = 1,n

 a(ia) = a(ia) + b(ib) * c

2
 -qarch=440d asks the compiler to use the dual FPU. -qarch=440 generates code for a single FPU only.

 ia = ia + inca

 ib = ib + incb

10 continue

 end

The listing file contains:

>>>>> LOOP TRANSFORMATION SECTION <<<<<

1586-541 (I) <SIMD info> NON-SIMDIZABLE: other misc reasons. (Loop

index 1 on line 5 with nest-level 0 and iteration count 100.)

1586-543 (I) <SIMD info> Total number of loops considered <"1">. Total

number of loops simdized <"0">.

In this example, the loop is not parallelized because the SLP algorithm used to find

parallelizable loads and stores doesn’t handle non-stride 1 accesses.

If we add a main program to the above daxpy1 routine, and compile and link with -O5,

we can see how whole program analysis removes alignment testing:

program main

real*8 a(1000),b(1000)

call daxpy1 (a,b,5.0, 1, 1, 500)

end

The pseudo code generated for the main program and the call to daxpy is now:

if (a and b are disjoint) {

 Use parallel instructions to load/compute/store

 } else {

Load/compute/store using single FPU

 }

Whole program analysis has enabled the compiler to discover that a and b are aligned on

16 byte boundaries, that the array is accessed using stride 1, and that the iteration count is

large enough to be worth parallelizing. Unfortunately, it does not realize that a and b are

already disjoint. We plan to fix this oversight shortly.

Unable to SIMDize messages from –qreport

When compiling with –qhot=simd and –qreport, the listing file may contain explanations

of why the compiler was unable to generate parallel instructions:

NON-SIMDIZABLE: non-simdizable reductions.

NON-SIMDIZABLE: upper bound of loop too small.

NON-SIMDIZABLE: loop not innermost.

NON-SIMDIZABLE: data dependence due to aliasing.

NON-SIMDIZABLE: unknown alignment.

NON-SIMDIZABLE: invalid operation.

NON-SIMDIZABLE: invalid loop structure.

NON-SIMDIZABLE: loop with function calls.

NON-SIMDIZABLE: non stride one access.

NON-SIMDIZABLE: other misc reasons.

Knowing why a loop doesn’t use the parallel instructions may lead to source code

changes that will allow use of the dual FPU.

Performance improvements in the latest compilers
The newest versions of the IBM XL compilers (IBM XL C/C++ Advanced Edition V8.0

for Blue Gene, IBM XL Fortran Advanced Edition V10.1 for Blue Gene) have focused on

increasing the quality of the compiler, as well as improving the performance of both -

qarch=440 and -qarch=440d generated code. Performance improvements from the

C/C++ V8.0 and Fortran V10.1 compilers for AIX and Linux have also improved the

performance of BlueGene programs. In addition, significant effort has also been invested

in improving the generation of SIMD instructions:

• Simdization of double complex with -qhot

• Simdizing part of a loop without distributing the loop

• Enhanced interprocedural alignment analysis to track 16-byte compile-time

misalignment

• Better alignment code generation to maximize load reuse across statements and

across iterations

• More reuse conscious loop distribution for simdization purposes

The following chart shows the improvement at –O5 for both the V8/10.1 GA compilers

and PTF1 compilers, compared to the latest update for the V7/9.1 compilers. Detailed

breakdowns for each benchmark suite can be found in Appendix A.

Improvement with -O5: V8/10.1 GA, PTF1 vs. V7/9.1

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

Spec2000FP NAS 3.2 Serial sPPM ddcmd uKernels

V8/10.1 GA 440

V8/10.1 GA 440d

V8/10.1 PTF1 440

V8/10.1 PTF1 440d

The following chart shows how well the compiler uses the dual FPU. Examination of the

detailed results shows that several benchmarks have seen a large penalty for using

–qarch=440d. Investigation into some of these problems has led to increased

performance, as can be seen by the improved results in the V8/10.1 GA and PTF1

versions.

Improvement with -O5: -qarch=440d vs. -qarch=440

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

Spec2000FP NAS 3.2 Serial sPPM ddcmd uKernels

V7/9.1

V8/10.1 GA

V8/10.1 PTF1

Future directions
IBM plans to continue to address performance of dual FPU code in future updates and

releases. Improvements in the SIMD framework will also benefit BlueGene. We expect

that this will lead to better exploitation of the dual FPU.

Summary
The presence of a second FPU on the Blue Gene processors potentially allows double the

performance on floating point algorithms over just using a single FPU. The ability of the

IBM XL compilers to automatically use the dual FPU unit depends strongly on the

properties of the source code. The more regular the accesses to floating point data, the

more the compiler is able to exploit the dual FPU. Examples of regular access include

matrix multiplication and vector processing. This paper has described the implementation

of the dual FPU in BlueGene/L and some limitations of automatic compiler exploitation

of this dual FPU. Our long term goal is to ensure that using the dual FPU will be no

slower than single FPU code. This may not be achievable, due to the extra versioning

necessary for alignment or aliasing checks, but the overhead should be minimized.

Recommended reading
The document “Using the XL Compilers for Blue Gene” (SC10-4310-00) comes with the

IBM XL C/C++ Advanced Edition V8.0 for Blue Gene and IBM XL Fortran Advanced

Edition V10.1 for Blue Gene compilers.

Contacting IBM

IBM welcomes your comments. You can send them to compinfo@ca.ibm.com or mail

them to this address:

XL Compiler Development

Department 697

Application Development Technology Centre

Software Division Toronto Laboratory IBM Canada Ltd.

8200 Warden Avenue

Markham, Ontario

Canada – L6G 1C7

Copyright Notice

© Copyright IBM Corp. June 2006. All Rights Reserved.

IBM is trademark or registered trademark of International Business Machines

Corporation in the U.S., other countries or both.

Appendix A: Detailed Compiler Results V8/10.1 vs. V7/9.1

These measurements were made on a 700Mhz DD2 Blue Gene system at Watson Research Lab.

The V7/9.1 compilers used update 3. The V8/10.1 GA compiler used was the version available

March 17, 2006, and the PTF1 compiler is the version available June 23, 2006.

NAS Serial Improvement with -O5:

V8/10.1 GA, PTF1 vs. V7/9.1 Compilers

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

ft
m

g sp lu

lu
-h

p bt is ep cg ua

A
ve

ra
ge

V8/10.1 GA 440

V8/10.1 GA 440d

V8/10.1 PTF1 440

V8/10.1 PTF1 440d

NAS Serial Improvement with -O5:

 -qarch=440d vs. -qarch=440

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

ft
m

g sp lu

lu
-h

p bt is ep cg ua

A
ve

ra
ge

V7/9.1

V8/10.1 GA

V8/10.1 PTF1

ddcmd uKernels Improvement with -O5:

V8/10.1 GA, PTF1 vs. V7/9.1 Compilers

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

dax
py.

dax
py_

ke
rn

el

ddcm
d.k

er
nl

ddcm
d.re

si
dual

ddcm
d.T

A
B
C
5X

5X
3

ddcm
d.k

er
nl_

s

ddcm
d.re

si
dual

_s

ddcm
d.s

plit

dot.d
ot_

ke
rn

el

m
m

.m
m

_e
ve

n

m
m

.m
m

_o
dd

sl
11

.s
l1

1_
00

0

sl
11

.s
l1

1_
11

0

sl
11

.s
l1

1_
10

1

sl
11

.s
l1

1_
11

1

sl
11

.s
l1

1_
55

0

sl
71

.s
l7

1_
00

0

sl
71

.s
l7

1_
10

0

sl
71

.s
l7

1_
11

0

sl
71

.s
l7

1_
10

1

sl
71

.s
l7

1_
11

1

A
ve

ra
ge

V8/10.1 GA 440

V8/10.1 GA 440d

V8/10.1 PTF1 440

V8/10.1 PTF1 440d

ddcmd uKernels Improvement with -O5:

-qarch=440d vs. -qarch=440

-100.00%

-50.00%

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

dax
py.

dax
py_

ke
rn

el

ddcm
d.k

er
nl

ddcm
d.re

si
dual

ddcm
d.T

A
B
C
5X

5X
3

ddcm
d.k

er
nl_

s

ddcm
d.re

si
dual

_s

ddcm
d.s

plit

dot.d
ot_

ke
rn

el

m
m

.m
m

_e
ve

n

m
m

.m
m

_o
dd

sl
11

.s
l1

1_
00

0

sl
11

.s
l1

1_
11

0

sl
11

.s
l1

1_
10

1

sl
11

.s
l1

1_
11

1

sl
11

.s
l1

1_
55

0

sl
71

.s
l7

1_
00

0

sl
71

.s
l7

1_
10

0

sl
71

.s
l7

1_
11

0

sl
71

.s
l7

1_
10

1

sl
71

.s
l7

1_
11

1

A
ve

ra
ge

V7/9.1

V8/10.1 GA

V8/10.1 PTF1

SPEC2000FP Improvement with -O5:

-qarch=440d vs. -qarch=440

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

w
upw

is
e

sw
im

m
grid

ap
plu

m
es

a

gal
gel ar

t

eq
uak

e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

A
ve

ra
ge

V7/9.1

V8/10.1 GA

V8/10.1 PTF1

Note: sixtrack and fma3d failed with –qarch=440d –O5 with V7/9.1 compilers

SPEC2000FP Improvement with -O5:

V8/10.1 GA, PTF1 vs. V7/9.1 Compilers

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

w
upw

is
e

sw
im

m
grid

ap
plu

m
es

a

gal
gel ar

t

eq
uak

e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

A
ve

ra
ge

V8/10.1 440

V8/10.1 440d

PTF1 440

PTF1 440d

Note: sixtrack and fma3d failed with –qarch=440d –O5 with V7/9.1 compilers

